第四章 组装复杂性
4.3 通往稳定生态系统的随机路线
目录
第一章 人造与天生
第二章 蜂群思维
第二章 蜂群思维
第三章 有心智的机器
第三章 有心智的机器
第四章 组装复杂性
第四章 组装复杂性
4.3 通往稳定生态系统的随机路线
第五章 共同进化
第五章 共同进化
第六章 自然之流变
第六章 自然之流变
第七章 控制的兴起
第七章 控制的兴起
第八章 封闭系统
第八章 封闭系统
第九章 “冒出”的生态圈
第九章 “冒出”的生态圈
第十章 工业生态学
第十章 工业生态学
第十一章 网络经济学
第十二章 电子货币
第十三章 上帝的游戏
第十三章 上帝的游戏
第十三章 上帝的游戏
第十四章 在形式的图书馆中
第十四章 在形式的图书馆中
第十五章 人工进化
第十五章 人工进化
第十六章 控制的未来
第十六章 控制的未来
第十七章 开放的宇宙
第十七章 开放的宇宙
第十八章 有组织的变化之架构
第十九章 后达尔文主义
第十九章 后达尔文主义
第二十章 沉睡的蝴蝶
第二十章 沉睡的蝴蝶
第二十一章 水往高处流
第二十二章 预言机
第二十二章 预言机
第二十三章 整体,空洞,以及空间
第二十三章 整体,空洞,以及空间
第二十四章 造物九律
上一页下一页
起初,人们也不是很清楚是否会容易地得到一个稳定的系统。皮姆曾以为,随机生成的生态系统可能会“永无休止地徘徊,由一种状态转为另一种状态,再转回头来,永远都不会到达一个恒定状态。”然而,人造生态系统并没有徘徊。相反,令人惊讶的是,皮姆发现了“各种奇妙的现象。比如说,这些随机的生态系统绝对没有稳定方面的麻烦。它们最共同的特征就是它们都能达到某种恒定状态,而且通常每个系统都有其独有的恒定状态。”
为了补充他们在试管内的研究,皮姆还设立了计算机模拟试验——在计算机里构建简化的生态模型。他用代码编写了需要其它特定物种的存在才能生存下来的人造“物种”,并设定了弱肉强食的链条:如果物种B的数量达到一定密度,就能灭绝物种A。(皮姆的随机生态模型与斯图亚特·考夫曼的随机遗传网络系统相似。见第二十章)。每个物种都在一个巨大的分布式网络中与其它物种有松散的关联。对同一物种列表的成千上万种随机组合进行了运行后,皮姆得到了系统能够稳定下来的频度。所谓稳定,即指在小扰动下,如引入或移除个别物种,不会破坏整体的稳定性。皮姆的结果与其瓶装微观生物世界的结果是相呼应的。http://www.99lib.net
在田纳西州立大学的实验室里,生态学家皮姆和吉姆·德雷克一直在以不同的随机次序组合微生态系统的元素,以揭示次序的重要性。他们的微观世界是个缩影。他们从15至40种不同的单一水藻植株和微生物入手
九_九_藏_书_网
,依次把这些物种以不同的组合形式及先后次序放入一个大烧瓶。10到15天之后,如果一切进展顺利,这个水生物的混合体就会形成稳定的、自繁殖的泥地生态——一种很特别的、各物种相互依存的混合体。另外,德雷克还在水族箱里和流水中分别建立了人工生态。将它们混在一起后,让其自然运行,直到稳定下来。“你看看这些群落,普通人也能看出它们的不同,”皮姆评论道。“有些是绿色的,有些是棕色的,有些是白色的。有趣的是没办法预先知道某种特定的物种组合会如何发展。如同大多数的复杂系统一样,必须先把它们建立起来,在运行中才能发现其秘密。”
按皮姆的说法,计算机模型显示,“当混合体中有10至20种成分时,其峰值(或者说稳定点)可能有十几到上百个。假如你重演一遍生命的进程,会达到不同的峰值。”换句话说,投放了同样的一些物种后,初始的无序状态会朝向十几个终点。而改变哪怕是一个物种的投入顺序,都足以使九*九*藏*书*网系统由一个结果变成另一个。系统对初始条件是敏感的,但通常都会转为有序状态。
田纳西州立大学生态学家斯图亚特·皮姆将各种次序——如经典的刀耕火种——与自然界上演了无数次的次序作了比较。“从进化的意义上来说,参与游戏的选手们知道先后的顺序是什么。”进化不仅发展了群落的机能,而且还对群落的形成过程进行了细调,直到群落最终能够成为一个整体。还原生态系统群落则是逆向而行。“当我们试图还原一块草原或一块湿地的时候,我们是在沿着该群落未曾实践过的道路前行,”皮姆说。我们的起点是一个旧农场,而大自然的起点则可能是一个万年前的冰原。皮姆自问道:99lib.net我们能通过随机加入物种,组合出一个稳定的生态系统吗?要知道,人类还原生态系统的方式恰恰带有很强的随机性。
如果你不介意获得的系统是什么样子,那么要获得一个稳定的生态系统是很容易的。这很令人吃惊。皮姆说:“我们从混沌理论中得知,许多确定系统都对初始条件极其敏感——一个小小的不同就会造成它的混乱。而这种生态系统的稳定性与混沌理论相对立。从完全的随机性入手,你会看到这些东西聚合成某种更有条理性的东西,远非按常理所能解释的。这就是反混沌。”
皮姆和德雷克发现了一个原则,它对任何关注环境以及对创建复杂系统感兴趣的人都是重要的经验。“要想得到一块湿地,不能只是灌入大量的水就指望万事大吉了。”皮姆告诉我,“你所面对的是一个已经历经了千万年的系统。仅仅开列一份丰富多样的物种清单也是不够的。你还必须有组合指南。”
不过,其中仍有机巧。随着事情的进展,帕卡德注意到物种加入的次序很有关系。他获悉其他生态学家发现了同样的情http://www.99lib.net况。利奥波德的一位同事发现,通过在杂草丛生的土地,而不是像利奥波德那样在新开垦的土地上播种北美草原的种子,能够获得更接近真实的北美草原。利奥波德曾经担心争强好胜的杂草会扼杀野花,但是,杂草丛生的土地比耕种过的土地更像北美大草原。在杂草丛生的陈年地块上,有一些杂草是后来者,而它们中有些又是大草原的成员。它们的提早到来能加速向草原系统的转变。而在耕耘过的祼地上,迅速抽芽的杂草极具侵略性,那些有益的“后来者们”加入这个集体的时间过晚。这好比在盖房子时先灌注了水泥地基,然后钢筋才到。因而,次序很重要。
皮姆把帕卡德还原伊利诺斯大草原(或者应该说是稀树大草原)的工作看成是对他的发现的佐证:“帕卡德第一次试图组合那个群落的时候失败了,从某种意义上说,是由于他得不到所需的物种,而在清除不想要的物种时又遇到很多麻烦。一旦引进了那些古怪但却合适的物种,则离恒定状态就相当接近了,所以它能容易地达到那个状态,并可能一直保持下去。”
更多内容...
上一页